ISRAEL JOURNAL OF MATHEMATICS 115 (2000), 253268

ORTHOGONAL ALMOST LOCALLY
MINIMAL PROJECTIONS ON /7

BY

M. ZipPIN*

Institute of Mathematics, The Hebrew University of Jerusalem
Jerusalem 91904, Israel
e-mail: zippin@math.huji.ac.il

ABSTRACT

A projection P on a Banach space X with ||P|| < Ag is called almost locally
minimal if, for every & > 0 small enough, the ball B(P, ) in the space of
operators L(X) does not contain a projection @ with || Q|| < || P||(1-Da?),
where D = D()o) is a constant independent of ||P||. It is shown that, for
every p > 1 and every compact abelian group G, every translation invari-
ant projection on Ly{G) is almost locally minimal. Orthogonal projections
on £} are investigated with respect to some weaker local minimality prop-
erties.

1. Introduction

The purpose of this paper is to study projections on some classical Banach spaces
which have the following local minimality property.

Definition 1.1: Let A\g > 1 and D = 10 + 12)3. A projection P on a Banach
space X with [|P]| = A < A¢ is called almost locally minimal (a.l.m. for short)
if, for every 0 < o < (8Xg) ™}, the ball B(P,) in the space of operators L(X)
does not contain a projection Q with ||Q|| < A(1 — Da?).

Almost locally minimal projections were defined and characterized in [Z-1] in
the case of finite dimensional spaces as follows:
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PROPOSITION 1.2 (Theorem 2.4 of [Z-1]): A projection P on a finite dimensional
space X is almost locally minimal if, and only if, there is an operator S € L(X)
satisfying the following three conditions: trSP = || P||, the nuclear norm ||S||, =
1 and SP = PS.

Let us start by making a few remarks on a.l.m. projections. Definition 1.1
determines a certain guaranteed rate of a norm reduction for a given projection
P, if it is not a.l.m., in the following sense: for some o > 0, at a distance < «
there is a projection Q with ||Q|| ~ ||P|| — . On the other hand, an a.l.m.
projection P has the following minimality property:

Remark 1.3: Let Py be an a.l.m. projection on a space X and let P, be another
projection on X with (Py — P;)?> = 0 (a condition which holds, in particular,
when Py(X) = Py(X) or P}(X*) = P§(X*) but also in many other cases). Then
1P| > || Poll-

Proof: Let 0 < t < 1 and put P, = (1 — t)Py + tP;. Then P? — P, =
—(1 — t)t(Py — P;)? so P, is a projection for some 0 < ¢ < 1 if and only if
(Py— Py)? = 0. Suppose that ||Py||||Po|| ™! = p < 1; then || Py — B|| = t||Po — Pi||
while || || < (1= t)[[Poll + tl Pull = [(1 — ) + tulll Poll = [ Poll[1 — (1 — p)t]. Let
a = t||Py — Py||; then we get that ||Py — B|| = o while |B]| < ||Pol|[1 — De?] if
t is small enough, contradicting the fact that Fp is a.l.m. |

COROLLARY 1.4: An a.lm. projection P has the minimal norm among all
projections Q which can be connected to P by a line segment in L(X) consisting
of projections. The argument in Remark 1.3 shows that this set of projections is

identical with m(P) = {Q € L(X): Q* = Q and (Q — P)? = 0}.

COROLLARY 1.5: (a) There exists no a.l.m. projection P of norm ||P|| > 1
in Hilbert space, because the orthogonal projection @ onto P(X) has norm 1.
(b) There exist no a.l.m. projections of rank 1 with norm || P|| > 1 because onto
every one-dimensional subspace there exists a projection Q with ||Q]| = 1.

The purpose of this paper is to study natural examples of a.l.m. projections on
the classical spaces (Sections 2 and 3). In Sections 4 and 5 we pay special atten-
tion to the space £} and to “special” projections on this space which have weaker
local minimality properties. This study leads to a characterization of a.l.m. pro-
jections on £} which is slightly different from Proposition 1.2 (see Theorem 6.6).
We conclude with open problems and remarks in Section 6.

ACKNOWLEDGEMENT: I thank W.B. Johnson for many helpful discussions on
a.l.m. projections and for his valuable advice. He showed me the proof of Theorem
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2.1; without his contribution I would be left with only one infinite sequence of
examples of a.l.m. projections.

2. Examples of almost locally minimal projections

It is very hard to use Definition 1.1 in order to check if a projection is a.l.m.
and, in view of Corollary 1.5, it may seem that there are not too many a.l.m.
projections around. The following results show that the classical spaces have
many a.l.m. projections.

THEOREM 2.1: Let G be a finite abelian group and let P be a translation
invariant projection on L,(G). Then P is a.l.m.

Proof: We will use Proposition 1.2. Let X = L,(G), suppose that ||P|| = A and
choose 0 = L(X)* such that |lo]] =1 and o(P) = A. The functional ¢ € L(X)*
can be represented by an operator S on X via the relation ¢(T") = trST for all
T € L(X) where, as is well known, 1 = ||o|| = ||S||». Using Rudin’s averaging
procedure [R], let § = fG T,-15Tydg where dg represents the Haar measure on
G and T, denotes the translation by g. We claim that the translation invariant
operator S satisfies the three conditions of Proposition 1.2. First of all, since P
commutes with translations, we have that

tr(PS) =/ tr(PT,-15T,)dg =/ tr(Ty-1 PSTy)dg :/ tr(PS)dg = tr(PS) = A.
G G G

Secondly, because ||S||» = 1 and ||Ty||, = 1 for all g € G and 1 < p < o0, we
get that ||S||x < 1. Finally, since both P and § are translation invariant, they
commute. By Proposition 1.2, P is a.l.m. ]

A close look at the proof of Proposition 1.2 above (Theorem 2.4 of [Z-1]) leads
to the following extension of Theorem 2.1.

THEOREM 2.2: Let G be a compact abelian group, let Ao > 1 and let P be a
bounded, translation invariant projection on L,(G) with ||P|| = A < Ag. Then P
is a.l.m.

Proof: Suppose that P is not alm. and 1 < ||P|] = A < Ag. Then there is
an a, (8A)™! > a > 0, and a projection @ on L,(G) with ||P — Q|| < a and
QI < A(1 — Da?). The proof of the sufficiency part of Theorem 2.4 of [Z-1]
provides us with two automorphisms U and V on L,(G) such that the following
conditions hold,

(2.1) U< Q=27 IVI<(1-2)”! and
QU —~ Q)| < 4aA(1+2)
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and

(22) P-Q=—[(I-P)VP+(Q - P)U(P~Q) - PU(I - P)
+(@Q-P)QU(I - Q) +(Q - P)QU(Q — P) + PQU(I — P)I.

For the precise definitions of U and V and their properties see the proof of
Theorem 5.2 below. Select e € L,(G) and f* € L,(G)* with |le|]| = 1 = || f*|| such
that || Pe|| > A(1 — (1/2)a?) and f*(Pe) > M1 — &?) and consider the operator
S = f*®e on L,(G). Clearly, trPS = f*(Pe) > A\(1 — a?) and ||S||» < 1. The
operators P and S may not commute, but let S = fG T4-15Tydg; then, as in the
proof of Theorem 2.1 above, we have

(2.3) tr(PS) > M1 —a?), |§]a<1 and SP=PS.

Because SP = PS8, § = PSP+ (I - P)S(I — P). Therefore, tr(S(I — P)V P) =
0 = tr(SP(U — QU)(I — P)). It follows from (2.1), (2.2) and (2.3) that

A1 —a?) = A1 - Da?) <A(1—a?) — Q]|
<tr($(P-Q))
=—[tr(5(Q — P)U(P - Q))
+tr(8(Q - P)QU(I - Q))
+ tr(S(Q — P)QU(Q — P))]
<(1-Aa) Yo +4a2A(1+ A) + A1 — da) 1o,

Hence
MD —1)a? < [2A(1 = o)™t + 401 + N)]o?,

an absurdity, by the definition of D (Definition 1.1). ]

Remark 2.3: Walter Rudin’s averaging procedure ([R] Theorem 1), which is
used above, showed that a bounded translation invariant projection P on L,(G)
has minimal norm relative to all projections onto the same translation invariant
subspace. Corollary 1.4 and Theorem 2.2 extend this minimality property to the
set m(P). Moreover, Theorem 2.2 replaces this minimality property by the almost
local minimality property relative to all close-by projections @ on L,(G).
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3. Orthogonal almost locally minimal projections on ¢}

Identifying operators T' on £ with the matrix (¢; ;)7 ;= which represents them,
with respect to the unit vector basis {u;}}-,, we call a projection P = (p; ;) on
¢% orthogonal if P is an orthogonal projection on £3, i.e. p;; = p; ; for all 1 <
i,j < n. A representation theorem (Theorem 3.6 of [Z-1]) for a.l.m. projections on

27 takes a very useful form in the special case of orthogonal projections, namely,

PROPOSITION 3.1: Let P be an orthogonal a.l. m. projection on £} with |P| =
A > 1. Then there is an 2 < m < n and a permutation {u;}{—; of the unit vector
basis of £} with respect to which

A 0
r=[5 )
where P, and P, are projections with || Pi|| = A, || P:]| < A, Py is an m x m matrix,

S |pij| = A for all 1 < j < m and there exist positive numbers {\;}[2; with
ST A =1 such that A\;' Y Alpisl = A forall1 < i <m.

Remark 3.2: A square matrix P, with the above properties is said to be equiva-
lent to a A-doubly stochastic projection. In the case \; = m™,
Z;n:l |pijl = A for all 1 <4 < m and we call P; A-doubly stochastic (A-
d.s. for short). If an operator T is A-doubly stochastic then ||T|| = A in both the
L(¢7) and the L(£%) norms. If T is equivalent to a A-d.s. operator, then, by
[2-1], in the case of rational A;’s, there is an isometric embedding J of £} into
some larger £ so that T is canonically transformed to a A-d.s. operator on £). It
easily follows from Proposition 1.2 that, under such an isometric embedding, an
a.l.m. projection on £7 is transformed to an a.l.m. projection with the same norm
and isometrically identical range because there is a canonical norm-1 projection

of ) onto J(£}).

In view of Theorem 2.1, if G is a finite abelian group then every translation
invariant projection P on L;(G) = £V, being orthogonal, has the representation
suggested by Proposition 3.1. The question, what are the matrices P; and P, of
the above representation theorem in this case, is answered in the following:

PROPOSITION 3.3: Let G be a finite abelian group and let P be a translation
invariant projection on Ly(G) with ||P|| = A. Let |G| = N and let (p; ;) be the
N x N matrix representing P with respect to the unit vector basis {ug}g¢ecc
of & = L,(G), where uy = ||14||7'14. Then the matrix (p;;) is A-doubly
stochastic.

Proof: Since P is translation invariant, for every g, h € G, the set {p; 4: 7 € G}
of the components of the vector Pu, is identical with the set {p;s: j € G} of
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the components of Pup. Therefore, for every g € G, A = ||Pugl| = 3 |pjql-
Because P is an orthogonal projection, 3 . |pj¢| = A for all j € G' and hence
P is A-doubly stochastic. In the notation of Proposition 3.1, P = P; and P, = 0.
|

4. Orthogonally almost locally minimal projections on £}

We start with a weaker property of local minimality for orthogonal projections
on {7.

Definition 4.1: Let Ap > 1 and D = 10 + 12)2. An orthogonal projection P on
£} with ||P|| = A < A is called orthogonally almost locally minimal (o0.a.l.m. for
short) if for every a > 0 small enough, the ball B(P, a) contains no orthogonal
projection @ with [|Q] < A(1 — Da?).

Notation: Given T = (t; ;) € L(£7) we denote by T# the operator on £} repre-
sented by the matrix (tf]) = (t;,). The purpose of this section is to prove the
following:

THEOREM 4.2: An orthogonal projection P on £} is o.a.l.m. if and only if there
is an operator S € L(£7) satisfying the following three conditions: tr(SP) = || P,
ISla =1 and (S + S#)P = P(S + S#).

We need three preliminary lemmas for the proof of Theorem 4.2. In the proof
we need to construct projections with certain properties. The first tool is devised
to construct a projection out of an operator which behaves in a fashion similar
to that of a projection.

LEmMA 4.3 ([Z-2]): Let A\ > 1 and let X be a Banach space. There exist a
constant C' = C(Xg) and a continuous function 3(T'), defined for all operators T
on X which satisfy the conditions ||T|| < X and ||[T? — T|| = a < }, such that
B(T) is a projection and ||3(T) — T|| < Ca. Moreover, if T is hermitian so is
B(T).

Remark 4.4: The detailed proof of Lemma 4.3 is given in [Z-2]. It does not
address the hermitian case formally, but an easy examination shows that, because
it uses an iterative process which preserves the hermitian structure, the proof
yields the hermitian case too.

The second tool we need was used in the proof of Theorem 2.3 of [Z-1] and
we will prove it here for completeness. It will tell us how to obtain operators T
satisfying the condition of Lemma 4.3.
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LEMMA 4.4: Let P be a projection on a Banach space X and let W be an
operator with ||W|| = 1 for which

W=PW({I-P)+(I-PWP. -
Then, for every é > 0,

(P - 6W)? — (P — 6W)| < 6%
Proof:

(P = 6W)2 — (P = §W)|| =||P — 6PW — WP +6°W? — P + 6W||
=|P-6PW(I - P)—-6(I-P)WP+5W?-P
+8PW(I — P) +6(I — P)WP|
<& n

The third preliminary lemma describes a norm reduction operation of an £}
vector.

LEMMA 4.5: Let A > 1 and 1 > 9 > 0 be constants and assume that p =
(p1y...,pn) and w = (wy,...,wn) are vectors with )., _,|pa| = X and
Sh_ilwsl < 1. Let A = {h: pp = 0}, 7 = e"**® with a(h) = argpy for
those h ¢ A and y, = —e~ P with B(h) = argwy, for h € A.

Ir Re(Z;;l ypwp) > o then there is a 8y such that, for every 0 < § < &g,
llp = dwlls < X = $v06.

Proof: Let ¢ = max{|pn|~*|lwp| : h ¢ A} and, by continuity, choose 8y > 0
so small that ReY | vjwn > 170 whenever max{|y, — | :1 < h < n} <
28pc(1 — dpc) 1. Let 0 < § < §p and put 6(h) = arg(ps — dwy,) for h ¢ A. By the
triangle inequality, if h ¢ A then

e~ ™) — e=ieh)| =|(py, — Swp) " |pn — Swp| — PZ”Phl‘

=(Ipn — Gwnllpnl) ™ [| pn = Swnlpn — palp|

+{lpnlpn — o — Swn)ial||
<2(lph — Swhllpn!) " [pal6lwnl
=26|pn| ™ fwn (1 — 8lpnl " wal) !
<20c(1 = b¢) ™! < 28gc(1 — Gpe) L.
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Let v}, = e~ if h ¢ A and v}, = 7, for h € A. The choice of & ensures that,
whenever 0 < 6 < dy,

Y Ipn — Swn| = Re Y 7 (pn — Swn) <Y |pal —Red > vhwn
h=1 h=1 h=1 h=1

1
< A — =vd.
<A 570 [

Proof of Theorem 4.2: Let (p; ;) be the n x n matrix which represents P with
respect to the unit vector basis {u;}"_; of £7. Suppose that ||P|| = A; then, we
may assume w.l.o.g. that there is an 1 < m < n such that > ., [pi;| = A for
1 <j < mwhilesup{} ", |pi jl: m < j <n}=p< A Let ®denote the set of all
m-tuples ¢ = (@1,... ,9m) of non-negative numbers {¢;}72; with > .- ¢; = 1.
Let T denote the set of all m-tuples of functionals ¢ = (g1,92,--. ,9m) With
llgillo = 1 such that g;(3"~;pijui) = A for all 1 < j < m. Note that if
g5 = Sor_, ginug, (where {uf }?_, is the unit vector basis of £%,), then g; , = e=%
if pr; = re?® # 0 while in the case pn; = 0, g;» may be any number with
|9;,n] < 1. Define the operator S(p,g) by S(¢,9) = S pigi ®u; and let

A={S(p,g9):p€® and ge I}

Clearly, A is a compact convex set in L(£}). Let K = {T € L(£}): T# = —T},
let ComP denote the commutant of the projection P and put Q@ = ComP + K.
There are two possibilities: either (a) QN A # @ or (b) QN A = 0. In case
(a), there exists in A an operator S = S(p,9) = T+ V where T € ComP and
V# = _V. Because P is an orthogonal projection and PT = TP, we also have
that

PT# = (TP¥)#* = (TP)* = (PT)* = T#*P* =T#P.

1t follows that

(S+S#)P=(T+V+T*+V#)P
=(T+T#*)P=P(T+T#)=P(T +V +T# +V#)
= P(S + §%).

Clealy, [|Slla < £, ¢ llgslllu; = 1 and

tr(PS) = Z(pjgj(Pu]-) = Z(pj)\ =\
j=1 j=1
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This establishes the statement of Theorem 4.2 in case (a).

Now suppose that (b) holds. Because ANQ = 0, A is compact and convex and
because (2 is a subspace of L{{}), there is a separating functional W* on L(£})
and a positive vy such that W*(T) = 0 for all T € Q and ReW*(T) > =, for all
T € A. Let the operator W represent W*; then we have that

(4.1) ttWT =0 forallT e Q
and
(4.2) Re(trWT) >~y forallT € A.

We may assume w.l.o.g. that |W|| =1 and put W = (wy ;). Let us explain the
meaning of (4.1). Picking any h # 4, 1 < h,j < n, and putting wy, ; = re™%,
let T denote the matrix for which (T); = e, (T);n = —® and (T)p, = 0
for all (p,q) # (h,j). We get that T# = —T, hence T € 2 and therefore
0 = tr(TW) = wjpe™ — wp ;e and so w;p = wy ;€2 = wy;. It follows that
W is hermitian.

We also have that for every T € L(¢}), PTP+ (I — P)T(I — P) € ComP C
and hence tr(W (PTP + (I -~ P)T(I — P))) = 0, but substituting W = PWP +
(I-PYW(I ~P)+PW({I—P)+ (I — P)WP we get that, for every T' € L({}),
0= tr((PWP + (I — PYW(I — P))T); therefore 0 = PWP + (I - PYW(I — P)
and we are left with

(4.3) W =PW(I -~ P) + (I — P)WP,

This is the hypothesis of Lemma 4.4. We proceed now to explain the significance
of (4.2). For every 1 < j <mlet g; = (gj1,... ,9jn) € & be the functional on
€7 defined, for every 1 < j < m, by

(4.4) 9ih = et if Phj # 0 and o = —argps j,
9ih = —e? if pr; =0and § = —argwy ;.
Clearly, the operator g; ® u; € A and hence
0 < < Re(tr(Wg; ® u;)) = Re(g;(Wu,))

(4.5) = Re(z gjpwn,;) for 1 <j<m.
h=1
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It follows from Lemma 4.5 (with vy,, = g; , wn = ws j and py, = pp ;) that if § > 0
is small enough, then, for every 1 < j < m, ||Pu; — &Y ,_, wp jun|| < A — $706.
Since |W]| = 1, and max{}_,_, |pr ;| : m < j < n} = p < A, by choosing
b0 < (A — p), we get that

1
(4.6) [P = 6W <||P]| - 3706 for all 0 <8 <.

In view of (4.3), the operator T' = P —§W satisfies, by Lemma 4.4, the inequality
|T?—-T| < §2%. Hence, by Lemma 4.3, there is an orthogonal projection @ = 5(T')
on £7 such that C§% > ||Q — T|| = [|Q — (P — 6W)]|. It follows from (4.6) that
QI < |P—6W ||+ C8* < A= 5700+C8?, while [|[P—Q|| < |P-T||+||T-Q] <
|6W |} + C&%. For small values of § this contradicts the assumption that P is
o.a.l.m. 1

5. Universally bounded projections on /7

Orthogonal projections with norm A and A-d.s. projections P on ¢} share the
property that their norms, as members of both L(¢7) and L(£%,), are ||P||;, =
|Plloc = A. By the classical interpolation theorem, ||P|[, < A for all 1 < p < oo.
Let us define, for any n x n matrix T,

ITllo = max{|ITl1, | Tlloo} = max{ITlls, IT*#]l:}

and call || - |o the universal norm. Clearly, for an orthogonal or A-d.s.
projection P, [Py = [|P[lo.

Definition 5.1: A projection P on £} with ||Pllo = A < Ag is called universally
almost locally minimal (u.a.l.m. for short) if, for every o > 0 small enough, the
ball Bo(P,a) = {T € L({}) : |P — Tllo < a} does not contain a projection @
with [|Qllo < A(1 - Da?).

Since the set of orthogonal projections @ on £} with ||Q|j; < A is much smaller
than the set of all projections Q with ||Q|lo < A, every orthogonal projection P
on £} which is u.a.l.m. is obviously o.a.l.m. It turns out that the converse is also
true.

THEOREM 5.2: Let P be an orthogonal o.a.l.m. projection on £% with ||P|; =
A>1. Then P is u.a.lm.

Proof: By Theorem 4.2, there exists an operator S on £f such that

ISIa=1, trSP=X and (S+S¥)P=P(S+S5%).
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Let 0 < a < [8A(1 + A)]~! and suppose that @ is a projection on £} with
lP = Qllo < o and ||Q]lo < A(1 — Da?). In order to prove the theorem it suffices
to construct operators A and {B;}¢_, on £7 such that

1 6
(5.1) P_E(Q‘*'Q#):A'*';Bi,
where

A* = A, A=(I-P)T'P+ PTy(I - P) for some {T;}2 | € L(£}),

and where Y% || B;|ly < (2 + 122%)a?.

Indeed, once (5.1) is established, because S+ S# commutes with P, S+ S# =
PT3P + (I — P)T3(I — P) for some Tx € L(£}) and so tr((S + S#)A4) = 0.
Moreover, because A = A* we get

(5.2) ADa? =X — A1 —-Da?) < - %(I|QH1+|IQ#I|1)

= 2= Z(IQIISIA + 1Q*lISIA)

< tr(SP) — %[tr(SQ) +tr(SQ¥)]
6
= t(S[P ~ 2(@+ QM) = x(S4) + 3 x(SB)
i=1
6
= Str(S(A+ A%)) + 3 tx(SBy)

=1

6
= Sr(SA+S5%A) + Z tr(SB:)

_1 #)A
—2tr(S+S’ +Ztr (SB;)
< (24 12)3%)2.

The inequality (5.2) is absurd in view of the size of D. It thus remains to prove
(5.1).

The first part of the construction is identical with the first part of the proof of
Theorem 2.4 of [Z-1]. We will repeat the argument for the sake of completeness.
Let T = PQ + I — Q; then T maps (I — Q)(¢}) identically onto itself and Q(£7)
into P(¢}). Moreover, ||I — Tllo = (@ — P)Qllo £ Aa hence T is invertible,
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T(Q(£})) = P({}) and, if V = T~1, then [|V]jp < (1 — Aa)~!. We claim that the
operator R = P + (I — P)V P is a projection of £7 onto Q(£}) along (I — P)({}).
Indeed, R? = R, I — R = (I — P)(I — VP) and, by the definition of T', for every
y € Q(€}), Ty = Py. Therefore

Ry=Py+ (I -P)T'Py=Py+(I1-P) T 'Ty=y.

Hence R is a projection of £7 onto Q(¢7) with kernel (I — P)(¢%). Moreover, if
llz|l < 1, then y = T~*Pz € Q%) and |lyll < (1 — Aa) IA|jz|| < M1 — Aa)™!
and so

(5.3)

IRz — Pz|| = (I - PYT~'Pz| = (I - P)Qyll
= (@ = P)Qyll < aA[ly]l < aX*(1 = ra)~! < 2X’%a,

Replacing P and @ by I — Q and I — P, respectively, in the first argument and
putting W = (I — Q)(I — P) + P we get that W|p(n) is the identity on P(¢7)

and

11 =Wl =11QU = Pllo = 1Q(Q = P)llo < A

Hence, W is invertible and it maps (I — P)(¢7) isomorphically onto (I — Q)(£7).
We let U = W1, obtain |Uljo < (1—Aa)~! and consider R = I-Q+QU(I-Q).
Then R is a projection with kernel Q(¢}) and, if y € (I — P)(¢}), then Wy =
(I — Q)y. Therefore

Ry=(I-Qy+QU(I-Q)y=uy.

It follows that R is a projection of £ onto (I — P)(£}) with ker R = Q(¢}) and
R=I—R Hence I —Q+QU(I-Q)=I1-P~— (I -P)VP and

(5.4) P-Q=-[(I-PWVP+QU{I-Q).

Moreover, for every z € Ball(¢}), if y = W~ (I — Q)z, then y € (I — P)(¢}),
llyll < (1 —Aa)~1(1+ A) and

1QUI — @)zl = IQU — Pyl = |Q(Q - P)ylh
< Aaflylh < Aa(l+A)(1 = ra) el < 4aA(1 + Nzl

A similar computation, using the £%, norm, yields || QU(I — Q)|lc < 4aA(1+ A),
therefore

(5.5) QU — Q)llo < 4aA(1 4 A).
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Taking the transpose of (5.4) we get that
P - Q¥ = —[PV¥(I- P) + (I - Q*U*Q¥]
1t follows that

(5.6) P — %(Q +Q%) = -%[(1 — P)VP+ PV#(I - P)
+QU(I - Q)+ (I - Q%) U*Q*].

Let us find more manageable expressions for QU(I — Q) and (I — Q#)U#Q#.
First note that

(5.7)
(Q@-PWU(P-Q)=(Q-PUI-Q)-(Q—-P)UI-P)
=QU(I-Q)-PU(I-Q)—QU(I-P)+PU(-P)
=QU(I-Q)- QU —P)+PU(I—P)

(because U maps (I — Q)(£}) onto (I — P){¢}), yielding PU(I — Q) = 0). Also,
(5.8)
QU(I - P) = Q*U(I ~ P)
=(Q-P)QU(I - P)+ PQU(I - P)
=(@Q-P)QUI - Q) +(Q - P)QU(Q - P) + PQU(I - P).

Combining (5.7) and (5.8) we get that

(5.9) QU(I—Q) =(Q - PYU(P - Q) +QU(I - P) - PU(I - P)
—(Q - P)U(P-Q)+(@—-P)QU(I - Q)
+(Q - PYQU(Q — P)+ PQU(I — P) - PU(I — P).

By taking the transpose of both sides we arrive at

(5.10) (I - QHU*Q* =(P - Q*)U*(Q* - P)
+ (I - QFU#Q*(Q* - P)
+(Q* - PYU*Q*(Q* - P)
+ (I - P)U*Q*P — (I - P)U*P.
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Hence, by (5.6), (5.9) and (5.10) we have

(5.11)
P-2(Q+Q*) =— [~ P)(V - U* + U*Q#)P

+P(V¥ U+ QUYI - P)] - S[@- PU(P- Q)
(P - QNUH@* - P) +(@- PQUU - Q)
(1~ QHUPQH(@Q* - P)+ (@~ PQUQ - P)
+(@* - PUQH(Q* - P)).

Put A = (I-P)T1 P+PT5(I—P) where Ty = —3(V-U#+U#Q#) and T» = T} .
Then, clearly, A satisfies the requirements of (5.1). Put B; = —(Q-P)U(P-Q)
and By = BY; then, since [|Q — Pllo < @, both ||Bi||; and ||B|; do not exceed
1a?|Ullo < 2(1-2e)"'a? < a®. Let By = —1(Q—P)QU(I -Q) and By = BY .
Since @ — Pllo = [@# ~ Pllo < a and, by (5.5), [|QU(I ~ Q)llp < 4eA(1 + ),
we get that ||Bs|l; and [|By]|; do not exceed 2a?XA(1 + A). Finally, put Bs =
~3(Q ~ P)QU(Q — P) and Bs = B¥. Then, because [|Q — Pllo < o we see
that ||Bs||1 and ||Bsll: do not exceed a?A(1 — Aa)™! < 2Xa?. It follows that
30 LIBillh € @22+ 401+ A) +4)) < a®(2+12X%). This establishes (5.1) and
completes the proof of Theorem 5.2. |

6. Remarks and open problems

The isomorphic type of the range of a projection on ¢} is far from being under-
stood. In view of the above results it may be useful to examine the ranges of
some special projections. In the sequel, ¢(A) denotes a function which depends
on A but is independent of n.

PROBLEM 6.1: Does there exist a function p()) such that, for every finite abelian

group G and every translation invariant projection P on L1(G) with ||P|| = ),
d(P(L1(G)), 2" < p(N)?

PROBLEM 6.2: Does there exist a function ¢{()) such that, for every n and every
A-doubly stochastic and a.l.m. projection P on £}, d(P(£}), £527<F) < o(A)?

PROBLEM 6.3: Does there exist a function ¢()) such that for every n and every
(A-doubly stochastic orthogonal) projection P with ||P|| = X on £} there is a
finite abelian group G and a translation invariant projection @ on Li(G) such
that [|Q| < (A) and d(PeT, Q(L1(G))) < p(A)?
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PROBLEM 6.4: Does there exist a function p()) such that, for every n and every
projection P with ||P|| = A on £, there is an N and an orthogonal projection Q
on £V such that ||Qllo < ¢()) and d(PE7,QEN) < o(A)7?

Note that, by Proposition 1 of [J-J], for every projection P on L;(u) with
||IP|l = X and every € > 0 there is an L;(v) space and a surjective isometry ¢ :
Li(u) = Ly (v) such that, if Q = Py, then [|Q[l = A and ||Q[leo < A1 +¢).

Remark 6.5: The argument used in the proof of Theorem 4.2 sheds more light
on a.l.m. projections on ¢ and may serve as an alternative proof of Proposition
1.2 in the case X = ¢7. Indeed, the argument yields the following:

THEOREM 6.8: Let P be a projection on ¢} with |P|| = A. Then exactly one of
the following statements holds:
(a) There is an operator S € L{£}) satisfying trSP = A, ||S|[» = 1 and SP =
PS (and hence P is a.l.m.).
(b) There exist positive numbers ~y and 8y, depending on P, such that, for
every 0 < a < Jg, the ball B(P,a + ca®) contains a projection Q with
|Qll < X — sv0x + ca?, where c is a universal constant.

Indeed, we only have to replace Q = ComP + K by = ComP in the proof
of Theorem 4.2 and ignore the Hermite property of all operators involved in the
proof. If S € QN A then S satisfies the assumptions of Proposition 1.2 and hence
P is al.m. On the other hand, if Q N A = () then there is a separating operator
W, with tr(WT) = 0 for all T € Q and Re(ttWT) > vo > 0 for all T € A.
The fact that Re(tr(WT')) = 0 for all T € 2 means precisely, in this case, that
W = PW(I — P) + (I — P)WP. The rest of the argument works perfectly well
to show that if P is not a.l.m. then (b) holds. Note that the norm reduction we
get in (b), for a projection P which is not a.l.m., is essentially linear in a, while
in Proposition 1.2, we obtain a norm reduction of order @?. This may seem to
be a contradiction but it is not, because, in Proposition 1.2, the constant D is
universal while in Theorem 6.6 the constants depend on P.

Remark 6.7: As mentioned in Remark 2.2 of [Z-1], we need a large constant
D = D(X¢) in the definition of an a.l.m. projection in Theorem 5.2 above and
in Theorem 2.4 of [Z-1]. Theorem 6.6 above shows that, in the special case of
X = €}, we are allowed to choose any positive D, independent on n and A,
in Definition 1.1 above and omit the restriction A < A\g. The choice D =1 is
natural, and, by Theorem 6.6, Proposition 1.2 remains valid with this or any
other choice of D > 0.
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PROBLEM 6.8: Let P be an orthogonal projection on {}. Suppose that P is
o.a.lm. Isit alm.?

Theorem 6.6 is a first step towards a positive solution of Problem 6.8.
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