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A B S T R A C T  

A projection P on a Banach space X with IIPII < A0 is called almost locally 
minimal if, for every (~ > 0 small enough, the ball B(P, o~) in the space of 
operators L(X) does not contain a projection Q with IIQII -~ IIPII( 1 -Oct2), 
where D = D(A0) is a constant independent of IIPII. It is shown that, for 
every p >_ 1 and every compact abelian group G, every translation invari- 
ant projection on Lp(G) is almost locally minimal. Orthogonal projections 
on t~' are investigated with respect to some weaker local minimality prop- 
erties. 

1. I n t r o d u c t i o n  

The  pu rpose  of this  p a p e r  is to  s tudy  pro jec t ions  on some classical  Banach  spaces 

which have the  following local  min imal i ty  proper ty .  

Del~nition 1.1: Let  A0 > 1 and D = 10 + 12A 2. A pro jec t ion  P on a Banach  

space  X wi th  [[PI[ = A < A0 is cal led a l m o s t  l o c a l l y  m i n i m a l  (a.l .m. for short)  

if, for every 0 < a < (8A0) -1 ,  the  bal l  B(P, o~) in the  space of opera to r s  L(X)  

does not  conta in  a p ro jec t ion  Q wi th  ILQII <- ~(1 - D~2) .  

Almos t  local ly  min ima l  pro jec t ions  were defined and charac te r ized  in [Z-l] in 

the  case of finite d imens iona l  spaces as follows: 
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PROPOSITION 1.2 (Theorem 2.4 of [Z-l]): A projection P on a finite dimensional 

space X is almost locally minimal if, and only if, there is an operator S C L (X)  

satisfying the following three conditions: t rSP  = IJPll, the nuclear norm IISH^ = 

1 and S P  = PS.  

Let us start by making a few remarks on a.l.m, projections. Definition 1.1 

determines a certain guaranteed rate of a norm reduction for a given projection 

P,  if it is not a.l.m., in the following sense: for some a > 0, at a distance _< a 

there is a projection Q with IIQII N IIpll - a 2. On the other hand, an a.l.m. 

projection P has the following minimality property: 

Remark 1.3: Let P0 be an a.l.m, projection on a space X and let P1 be another 

projection on X with (Po - P1) 2 = 0 (a condition which holds, in particular, 

when PI (X)  = Po(X) or P{(X*)  = P~(X*) but also in many other cases). Then 

IlPl[I _> IIPo[I. 

Proof." Let 0 < t < 1 and put Pt = ( 1 -  t)Po +tP1.  Then / o 2 _  Pt = 

- ( 1  - t)t(Po - P1) 2 so Pt is a projection for some 0 < t < 1 if and only if 

(P0 - P 1 )  2 = 0. Suppose that IIPIIIIIPol1-1 = # < 1; then IIPo - P t l l =  tllPo - P i l l  

while HPtll <_ ( 1 -  t)[[Po[[ + tllP1H = [ ( 1 -  t ) +  t#]llPo[I = HP011[1- ( 1 -  #)t]. Let 

a --- tltPo - Pill; then we get that tlPo - P t l i  = a while llPtll < IIPolt[1 - D a  2] if 

t is small enough, contradicting the fact that P0 is a.l.m. | 

COROLLARY 1.4: An a.l.m, projection P has the minimal norm among all 

projections Q which can be connected to P by a line segment in L (X)  consisting 

of projections. The argument in Remark 1.3 shows that this set of projections is 

identical with 7r(P) = {Q E L(X): Q2 = Q and (Q - p)2 = 0}. 

COROLLARY 1.5: (a) There exists no a.l.m, projection P of norm IIPII > 1 

in Hilbert space, because the orthogonal projection Q onto P ( X )  has norm 1. 

(b) There exist no a.l.m, projections of rank 1 with norm IIPH > 1 because onto 

every one-dimensional subspace there exists a projection Q with tlQtl = 1. 

The purpose of this paper is to study natural examples of a.l.m, projections on 

the classical spaces (Sections 2 and 3). In Sections 4 and 5 we pay special atten- 

tion to the space s and to "special" projections on this space which have weaker 

local minimality properties. This study leads to a characterization of a.l.m, pro- 

jections on s which is slightly different from Proposition 1.2 (see Theorem 6.6). 

We conclude with open problems and remarks in Section 6. 

ACKNOWLEDGEMENT: I thank W.B. Johnson for many helpful discussions on 

a.l.m, projections and for his valuable advice. He showed me the proof of Theorem 
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2.1; without his contribution I would be left with only one infinite sequence of 

examples of a.l.m, projections. 

2. E x a m p l e s  o f  almost locally minimal projections 

It is very hard to use Definition 1.1 in order to check if a projection is a.l.m. 

and, in view of Corollary 1.5, it may seem that there are not too many a.l.m. 

projections around. The following results show that the classical spaces have 

many a.l.m, projections. 

THEOREM 2.1: Let G be a finite abelian group and let P be a translation 
invariant projection on Lp(G). Then P is a.l.m. 

Proof: We will use Proposition 1.2. Let X = Lp(G), suppose that  IIPII -- ~ and 

choose a = L(X)* such that [[a[[ = 1 and a(P) -- A. The functional a E L(X)* 
can be represented by an operator S on X via the relation a(T) = t rST for all 

T E L(X)  where, as is well known, 1 = [la[[ = ][SHA. Using Rudin's averaging 

procedure [R], let S = f c  T9-~ STgdg where dg represents the Haar measure on 

G and Tg denotes the translation by g. We claim that the translation invariant 

operator S satisfies the three conditions of Proposition 1.2. First of all, since P 

commutes with translations, we have that 

t r (PS)  = lctr(PTg-~STg)dg = lctr(Tg-lPSTg)dg -- Ic tr(PS)dg = tr(PS) = A. 

Secondly, because HSI[A = 1 and HTgHp = 1 for all g E G and 1 < p _< oc, we 

get that  ]]S[]A _< 1. Finally, since both P and S are translation invariant, they 

commute. By Proposition 1.2, P is a.l.m. | 

A close look at the proof of Proposition 1.2 above (Theorem 2.4 of [Z-l]) leads 

to the following extension of Theorem 2.1. 

THEOREM 2.2: Let G be a compact abelian group, let A0 > 1 and let P be a 

bounded, translation invariant projection on Lp(G) with [[P[[ = A _~ Ao. Then P 

is a.l.m. 

Proof." Suppose that  P is not a.l.m, and 1 < [[PI1 = )~ < )~0- Then there is 

an a, (8A0) -1 > a > 0, and a projection Q on Lp(G) with l I P -  Q[I -< a and 

HQ[[ -< A(1 - Da2). The proof of the sufficiency part of Theorem 2.4 of [Z-l] 

provides us with two automorphisms U and V on Lp(G) such that  the following 

conditions hold, 

(2.1) IIUll _< ( 1 -  An) -1, IIVll < ( 1 -  An) -1 and 

I I Q U ( I  - Q)II < 4~A(1 + A) 
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and 

(2.2) P - Q = - [(I - P ) V P  + (Q - P ) U ( P  - Q) - P U ( I  - P)  

+ (Q - P ) Q U ( I  - Q) + (Q - P ) Q U ( Q  - P)  + P Q U ( I  - P)]. 

For the precise definitions of U and V and their properties see the proof  of 

Theorem 5.2 below. Select e E Lp(G) and f*  C Lp(G)* with IH] = 1 = Hf*ll such 

tha t  liBel[ > A(1 - (1 /2 )a  2) and f * ( P e )  > A(1 - c~ 2) and consider the opera tor  

S = f*  | e on Lp(G).  Clearly, t r P S  = f * ( P e )  > A(1 - a 2) and IIS]I^ < 1. The  

operators  P and S may not commute,  but  let S = f c  Tg-~STgdg; then,  as in the 

proof  of Theorem 2.1 above, we have 

(2.3) t r ( P S )  > ~ ( 1 - a 2 ) ,  ]ISI]^ < 1 and S P =  P S .  

Because S P  = P S ,  S = P E P  + ( I  - P ) S ( I  - P) .  Therefore,  t r ( S ( I  - P ) V P )  = 

0 = t r ( S P ( U  - Q U ) ( I  - P)) .  It follows from (2.1), (2.2) and (2.3) tha t  

A(1 - c~ 2) - A(1 - D a  2) _<A(1 - c~ 2) - IIQII 

_<tr(S(P - Q)) 

= - [ tr(S(Q - P ) U ( P  - Q)) 

+ t r (S (Q  - P ) Q U ( I  - Q)) 

+ t r (S (Q - P ) Q U ( Q  - P))] 

< ( 1  - + 4.2 (1 + + - 

Hence 

A ( D -  1)a  2 < [2A(1-  Aa) -1 + 4 A ( 1 +  A)]a 2, 

an absurdity, by the definition of D (Definition 1.1). | 

R e m a r k  2.3: Walter Rudin 's  averaging procedure (JR] Theorem 1), which is 

used above, showed tha t  a bounded translat ion invariant project ion P on LB(G) 

has minimal  norm relative to all projections onto the s a m e  translat ion invariant 

subspace. Corollary 1.4 and Theorem 2.2 extend this minimali ty proper ty  to the 

set ~r(P). Moreover, Theorem 2.2 replaces this minimali ty proper ty  by the almost 

local minimali ty  proper ty  relative to al l  c l o s e - b y  projections Q on Lp(G).  
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3. O r t h o g o n a l  a l m o s t  local ly  m in ima l  p r o j e c t i o n s  o n / ~  

Identifying operators T o n / ~  with the matrix (ti,j)~,j=l which represents them, 

u n projection P (Pi,j) on with respect to the unit vector basis { i}i=l, we call a = 

l~ o r t h o g o n a l  if P is an orthogonal projection on /~ ,  i.e. Pj,i = Pi,j for all 1 < 

i, j < n. A representation theorem (Theorem 3.6 of [Z-l]) for a.l.m, projections on 

/~ takes a very useful form in the special case of orthogonal projections, namely, 

PROPOSITION 3.1: Let P be an orthogonal a.l.m, projection on l~ with ]]P]] = 

A > 1. Then there is an 2 <_ m <_ n and a permutation {ui}i~l of the unit vector 

basis of l~ with respect to which 

01 P =  P2 

where i)1 and P2 are projections with I I P1 [I = A, [I P211 <~ A, P1 is an m x m matrix, 
m z _ _  A m ~ - - 1  [P~,31 A for all 1 < j <_ m and there exist positive numbers { ~}~=1 with 

~-~i=1 Ai 1 such that  A~ 1 rn Aj all 1 i < m. m = ~ j = l  ]P~,jl = A for < 

Remark 3.2: A square matrix P1 with the above properties is said to be equiva-  

len t  t o  a A-doubly s tochas t i c  p ro j ec t i o n .  In the case Ai = m -1, 
m Y~j=I [Pi,jl = A for all 1 G i < m and we call P1 A-doubly s t o ch as t i c  (A- 

d.s. for short). If an operator T is A-doubly stochastic then I[T][ = A in both the 

L(t~) and the L ( f~ )  norms. If T is equivalent to a A-d.s. operator, then, by 

[Z-1], in the case of rational Ai's, there is an isometric embedding J o f / ~  into 

some larger l g so that T is canonically transformed to a A-d.s. operator on t N. It 

easily follows from Proposition 1.2 that, under such an isometric embedding, an 

a.l.m, projection on l~ is transformed to an a.l.m, projection with the same norm 

and isometrically identical range because there is a canonical norm-1 projection 

o f / N  onto J (eD.  

In view of Theorem 2.1, if G is a finite abelian group then every translation 

invariant projection P on L1 (G) = i N, being orthogonal, has the representation 

suggested by Proposition 3.1. The question, what are the matrices P1 and P2 of 

the above representation theorem in this case, is answered in the following: 

PROPOSITION 3.3: Let G be a finite abelian group and let P be a translation 

invariant projection on LI(G) with HPll = A. Let IG[ = N and let (pij) be the 

N x N matrix representing P with respect to the unit vector basis {ug}gea 

of i N = LI(G),  where ug = [[lgH-11g. Then the matrix (Pi,j) is A-doubly 

stochastic. 

Proof: Since P is translation invariant, for every g, h E G, the set {pj,g: j E G} 

of the components of the vector Pug is identical with the set {Pj,h: J C G} of 
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the components of PUh. Therefore, for every g E G, A = IIPugll = ~ j e c  IPj,gl. 
Because P is an orthogonal projection, ~-~.geO IPj,gl = A for all j E G and hence 

P is A-doubly stochastic. In the notation of Proposition 3.1, P = P1 and P2 = 0. 
| 

4. O r t h o g o n a l l y  a h n o s t  loca l ly  m i n i m a l  p r o j e c t i o n s  on  g~ 

We start  with a weaker property of local minimality for o r t h o g o n a l  projections 

on ~ .  

Definition 4.1: Let A0 > 1 and D - 10 + 12A~. An orthogonal projection P on 

g~ with IIPII = A < A0 is called orthogonally almost locally minimal (o.a.l.m. for 

short) if for every ~ > 0 small enough, the ball B(P, ~) contains no orthogonal 

projection Q with I[QI[ - A(1 - Dc~). 

Notation: Given T = (ti,j) E L ( ~ )  we denote by T # the operator on ~ repre- 

sented by the matrix (t~j) = (t~#). The purpose of this section is to prove the 

following: 

THEOREM 4.2: An orthogonal projection P on g'~ is o.a.l.m, if  and only if  there 

is an operator S E L( s ) satisfying the following three conditions: t r (SP)  = Ilell, 
IlSll^ = 1 and (S  + s # ) P  = P(S  + s # ) .  

We need three preliminary lemmas for the proof of Theorem 4.2. In the proof 

we need to construct projections with certain properties. The first tool is devised 

to construct a projection out of an operator which behaves in a fashion similar 

to that  of a projection. 

LEMMA 4.3 ([Z-2]): Let Ao > 1 and let X be a Banach space. There exist a 

constant C = C(Ao) and a continuous function ~(T), defined for all operators T 

on X which satisfy the conditions I]TH _< Ao and lIT 2 - T]I = a _( 8,1 SUCh that 

/3(T) is a projection and II~(T) - T l l  < Ca. Moreover, if  T is hermitian so is 

~(T).  

Remark 4.4: The detailed proof of Lemma 4.3 is given in [Z-2]. It does not 

address the hermitian case formally, but an easy examination shows that,  because 

it uses an iterative process which preserves the hermitian structure, the proof 

yields the hermitian case too. 

The second tool we need was used in the proof of Theorem 2.3 of [Z-1] and 

we will prove it here for completeness. It will tell us how to obtain operators T 

satisfying the condition of Lemma 4.3. 
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LEMMA 4.4: Let  P be a projection on a Banach space X and let W be an 

operator with IlWll = 1 for which 

W = P W ( I  - P )  + ( I  - P ) W P .  

Then,  for every 5 > 0, 

II(P - 5 w )  ~ - (P - 5W)ll ~ 5 ~. 

Proo~ 

II(P - 5W) ~ - ( P  - 5w)t[  =lIP  - 5 P W  - 5 W P  + 52W 2 - P + 5wl l  

=lIP - 5 P W ( I  - P )  - 6 ( I  - P ) W P  + 52W 2 - P 

+ 5 P W ( I  - P)  + 5(I  - P ) W P I I  

<5 2. I 

The third  prel iminary lemma describes a norm reduct ion operat ion of an ~ 

vector. 

LEMMA 4.5: Let  A > 1 and 1 > 7o > 0 be constants and assume that  p = 
n 

(P l , . . .  ,Pn) and w = (Wl, . . .  ,wn)  are vectors with )-~h=l[Ph[ = A and 
n 

~h=l[Wh[  _< 1. Let  A = {h: Ph = 0}, 7h = e -i`~(h) with a(h)  = argph for 

those h q~ A and 7h ---- --e-i~(h) with iS(h) = arg Wh for h E A. 

I f  R e ( ~ =  1 7hwh) _> 70 then there is a 50 such that, for every 0 < 5 < 50, 

] l P -  5Will < A -  1 _ ~ 7 o 5 .  

Proof: Let c = max{[phl- l lwh] : h 6 A}  and, by continuity, choose 6o > 0 

so small tha t  R e  E~----1 ! 7hWh > 170 whenever max{17 ~ - 7hi : 1 _< h _< n} < 

25oc(1 - 5oc) -1 .  Let 0 < 5 < 6o and put  0(h) = arg(ph -- 5wh for h 6 A. By the 

triangle inequality, if h q~ A then 

le -i~ - e-i~(h) l = (Ph -- 5Wh) -11Ph -- 5Whl - - p h  11Phl 

=(IPh -- 8WhllPhl)-l [ IPh -- 5whlPh --IPhlPh 

+ Ip lp  - - 

<2(Iph -- 5WhNPhl) -11ph]5]Whl 

=251phl-11Wh](1 -- 5]phl-l[Wh[) -1 

<25C(1 -- 5C) -1 < 250C(1 -- 50C) -1. 
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Let ~/~ = e -i~ if h ~ A and 7~ = % for h E A. The choice of 60 ensures that ,  

whenever 0 < 5 < 60, 

IP/2 - 5Wh I = R e  7~ (Ph - 5Wh) <_ IPh I -- R e 5  E 7~ Wh 
h = l  h = l  h = l  h = l  

1 
< ,~ - {'yoS. m 

Proo f  of  Theorem 4.2: Let (pi,j) be the n • n matrix which represents P with 

respect to the unit  vector basis {ui}~"___l of e~. Suppose that  IIPII = ~; then, we 
n 

may assume w.l.o.g, tha t  there is an 1 _< m < n such that  Y~i=l Ip~,jl = A for 

1 < j < m while sup{~"__ 1 Ip~,j]: m < j < n} = tt < A. Let �9 denote the set of all 

m E i = I  ~9i m-tuples  ~o = (qOl, . . . ,  ~m) of non-negative numbers  {~o~}~=1 with m = 1. 

Let F denote  the set of all m-tuples of functionals g = (g l ,g2 , - . .  ,gin) with 
g /2 - -  _ _  Ilgjll~ = 1 such tha t  j ( ~ i = l p i d u ~ )  = ,~ for all 1 < j < m. Note tha t  if 

gJ = ~ h = l  ~ gj,hUh* (where {Uh}h= '~ is the unit vector basis of ~ ) ,  then 9j,h = e - i~  

i f  Ph , j  = re i~ r 0 while in the c a s e  Ph, j  = O, gj,h may be any number  with 

Igj,hl -< 1. Define the operator  S ( ~ , g )  by S(~ ,g )  = ~ i ~ 1  ~g~ | ui and let 

A = {S(qo, g): ~ E (I) and g e F}. 

Clearly, A is a compact  convex set in L(g~). Let K = {T E L(g~): T # = - T } ,  

let C o m P  denote the commutan t  of the projection P and put  ft = C o m P  + K.  

There  are two possibilities: either (a) ft N A ~ 0 or (b) ~ f ' )A = 0. In case 

(a), there exists in A an operator  S = S(qo, g) = T + V where T C C o m P  and 

V # = - V .  Because P is an orthogonal  projection and P T  = T P ,  we also have 

tha t  

p T  # = ( T P # )  # = ( T P )  # = ( P T )  # = T # p #  = T # p .  

It follows tha t  

(S  + S # ) P  = (T  + V + T # + V # ) P  

= ( T + T # ) P  = P ( T + T  #) = P ( T +  Y + T  # + Y #) 

= P(S  + s# ) .  

m 

Clearly, IISlIA ~ E~=I  jllg llllujll = 1 a n d  

m m 

t r ( P S )  = E ~~ = E qoj.X = .X. 
j = l  j = l  
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This establishes the s ta tement  of Theorem 4.2 in case (a). 

Now suppose tha t  (b) holds. Because A M gt = 0, A is compact  and convex and 

because ~ is a subspace of L(g~), there is a separating functional W* on L(g~) 

and a positive 7o such tha t  W* (T) -- 0 for all T E ~ and R e W *  (T) > 3`o for all 

T E A. Let the opera tor  W represent W*; then we have tha t  

(4.1) t r W T  = 0 for all T E f t  

and 

(4.2) R e ( t r W T )  > 3'0 for all T E A. 

We may  assume w.l.o.g, tha t  IIWII = 1 and put  W = (Wh,S). Let us explain the 

meaning of (4.1). Picking any h r j ,  1 < h , j  <_ n, and put t ing  Wh,j = re - i~ 

let T denote the matr ix  for which (T)h,j  = e -~~ (T)j,h = --e ~~ and (T)p,q = 0 

for all (p,q) ~ (h, j ) .  We get tha t  T # = - T ,  hence T E ~ and therefore 

0 = Br(TW) = W j , h  e - i O  - -  Wh,je i0 and so wj, h = W h , j e  2i0 = Wh,j. I t  follows tha t  

W is hermitian.  

We also have tha t  for every T E L(/~),  P T P  + (I  - P ) T ( I  - P )  E C o m P  C ft 

and hence t r ( W ( P T P  + (I  - P ) T ( I  - P)) )  = 0, but  subst i tut ing W = P W P  + 

( I  - P ) W ( I  - P)  + P W ( I  - P)  + ( I  - P ) W P  we get that ,  for every T E L ( ~ ) ,  

0 = t r ( ( P W P  + (I  - P ) W ( I  - P))T) ;  therefore 0 = P W P  + ( I  - P ) W ( I  - P)  

and we are left with 

(4.3) W = P W ( I  - P)  + (I  - P ) W P .  

This is the hypothesis  of Lemma 4.4. We proceed now to explain the significance 

of (4.2). For every 1 _< j < m let gj = (gj,1,-. �9 ,gj,n) E f n  be the functional on 

~ defined, for every 1 < j < m, by 

(4.4) gS,h = eia if ph,S r 0 and a = - argph,j,  

gS,h = - - e i ~  if Ph,S = 0 and/3  = - arg Wh, s. 

Clearly, the opera tor  gj | u s E A and hence 

(4.5) 

0 < 3`0 < R e ( t r ( W g j  | us) ) = R e ( g j ( W u j )  ) 
n 

= ae(  gj,h h,S) 
h=l 

for 1 <__j < m .  



262 M. ZIPPIN Isr. J. Math. 

It follows from Lemma 4.5 (with 7n = gj,h, Wh = Wh,j and Ph ~- Ph, j )  that if 5 > 0 

is small enough, then, for every 1 _< j _< m,  ][Puj - 5 Eh=ln Wh,jUh[[ _< ~ _ ,.~0(~ . 1  

Since I[W[] = 1, and max{~h=  1 ]Ph,j] : m < j _< n} = it < A, by choosing 

1 (A - it), we get that 50< 

(4.6) [ [ P -  6W]] <_ liP[[ - ~705 for all 0 < 6 < 60. 

In view of (4.3), the operator T = P - S W  satisfies, by Lemma 4.4, the inequality 

]IT 2-T[]  < 52. Hence, by Lemma 4.3, there is an orthogonal projection Q = ~(T) 

o n / ~  such that  C5 2 > IIQ - TII = IlQ - (P  - 5W)ll.  It follows from (4.6) that  

IIQII < ]IP-5WII+ C52 < , \ - 1 7 0 5 + c 5 2 ,  while I I P - Q I I  < IIP-TII+IIT-QII < 
]lgWll + c5  2. For small values of 5 this contradicts the assumption that  P is 

o.a.l.m. | 

5. U n i v e r s a l l y  bounded projections on  ~ 

Orthogonal projections with norm A and A-d.s. projections P on s share the 

property that  their norms, as members of both L ( ~ )  and L ( ~ ) ,  are IIPlll = 

IIPIEo = ,~. By the classical interpolation theorem, [IP[] p < A for all 1 < p < oe. 

Let us define, for any n • n matrix T, 

IITll0 = max{IlTII1, [ITl[oo} = max{llTII1, [IT#[I1} 

and call ]l" ]]0 t h e  un ive r sa l  no rm.  Clearly, for an orthogonal or A-d.s. 

projection P,  IIPlll = IlPll0. 

Definition 5.1: A projection P on ~ with IIPII0 -- ~ < ~0 is called universally 

almost locally minimal (u.a.l.m. for short) if, for every a > 0 small enough, the 

ball So(P,  a) = {T E L(g~) : l ip - TIIo < a} does not contain a projection Q 

with [[Q[[0 < A(1 - Da2).  

Since the set of orthogonal projections Q on g~ with [[Q[[1 < A is much smaller 

than the set of all projections Q with [[Q[[0 < A, every orthogonal projection P 

on g~ which is u.a.l.m, is obviously o.a.l.m. It turns out that  the converse is also 

true. 

THEOREM 5.2: Let  P be an orthogonal o.a.l.m, projection on ~'~ with lIP[J1 = 

A > 1. Then P is u.a.l.m. 

Proof'. By Theorem 4.2, there exists an operator S on g~ such that 

IlSll^ -- 1, t r S P  = A and (S  + S # ) P  = P ( S  + S # ) .  
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Let 0 < a < [8A(1 + )~)]-1 and suppose that Q is a projection on g~ with 

I[P - QII0 -< a and IIQH0 -< A(1 - Da2). In order to prove the theorem it suffices 
to construct operators A and 6 {B~}i= 1 on g~ such that 

6 

(5.1) P - ~(Q + Q#) = A + E Bi, 
i=1 

where 

= = - T ~ L ( g ~ ) ,  A # A, A (I P ) T 1 P + P T 2 ( I - P )  for some{ i} i= ,E  

6 and where ~ i : 1  ]lBi][1 ~ (2 + 12A2)a ~. 

Indeed, once (5.1) is established, because S + S # commutes with P, S + S # = 

PT3P + (I - P)T3(I - P) for some T3 C L(g~) and so tr((S + S#)A) = O. 
Moreover, because A = A # we get 

(5.2) ADa 2 = A - A(1 - Da  2) _< A - ~-(lIQlll + IlQ#[[1) 

= A -  (l[QIhllSll^ + IIQ [llllSllA) 

_ tr(SP) - l [ t r (SQ) + tr(SO#)] 

6 

= tr(S[P - ~(Q + Q#)]) = tr(SA) + E tr(SBi) 
i=1 

6 

--- l t r (S (A  + A#)) + E tr(SBi) 
i=1 

6 

= ~tr(SA + S#A)) + E tr(SBi) 
i=1 

6 

= ~tr((S + S#)A) + E tr(SBi) 
i=1 

<_ (2 + 12A2)a 2. 

The inequality (5.2) is absurd in view of the size of D. It thus remains to prove 

(5.1). 

The first part of the construction is identical with the first part of the proof of 

Theorem 2.4 of [Z-1]. We will repeat the argument for the sake of completeness. 

Let T = PQ + I - Q; then T maps (I - Q) (~)  identically onto itself and Q(g~) 

into P(g~). Moreover, III - TII0 = ]t(Q - P)QIIo <- Aa hence T is invertible, 
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T ( Q ( g ~ ) )  : P(g~) and, if V = T -1,  then llVtto ~_ (1 - ) , a ) - i .  We claim tha t  the 

opera tor  R = P + ( I  - P ) Y P  is a projection of ~ onto Q(g~) along ( I  - P)(g?) .  

Indeed, R 2 = R ,  I - R = ( I  - P ) ( I  - V P )  and, by the definition of T,  for every 

y E Q(g~) ,  T y  = P y .  Therefore 

R y  = P y  + ( I  - P ) T - i p y  -- P y  + ( I  - P ) T - i T y  = y. 

Hence R is a project ion of t~ onto Q ( ~ )  with kernel ( I  - P)(e~).  Moreover, if 

Ilxll < 1, then  y = T - 1 p x  E Q(~.~) and IlYll -< (1 - ) ~ o ~ ) - l ~ l l x l l  ~_ ~ ( 1  - .~OL) -1 

and so 

(5.3) 

IIRx - Pxll - -  li(~ r - P ) T - i P x l l  = [ l ( I  - P ) Q y I I  

Replacing P and Q by I - Q and I - P ,  respectively, in the first argument  and 

put t ing  W = ( I  - Q ) ( I  - P )  + P we get tha t  W[p(e?)  is the identity on P(g~) 

and 

III - W i l d  - -  I I Q ( I  - P ) ] l o  = I I Q ( Q  - P ) l [ o  _< A a .  

Hence, W is invertible and it maps ( I  - P ) ( ~ )  isomorphically onto (I  - Q)(~?~). 

We let U = W -~, obtain ]lUll0 <_ ( 1 - A a )  -~ and consider f l  = I - Q + Q U ( I - Q ) .  

Then  fl  is a project ion with kernel Q ( ~ )  and, if y E (I  -- P) ( t~) ,  then W y  = 

( I  - Q ) y .  Therefore  

f l y  = ( I  - Q ) y  + Q U ( I  - Q ) y  = y. 

It follows tha t  f l  is a project ion of l~ onto (I  - P) ( I~)  with ke r f l  = Q(g~) and 

fl  = I - R. Hence I - Q + Q U ( I  - Q)  = I - p - ( I  - P ) V P  and 

(5.4) P - Q = - [ ( I  - P ) V P  + Q U ( I  - Q)]. 

Moreover,  for every x c Ball(~7), if y = w - i ( I  - Q ) x ,  then y E ( I  - P)(g~),  

[]yl] < (1 - Ac~)-i(1 + A) and 

][QU(I - Q)x][1 = ]]Q(I - P)yl]I = ]]Q(Q - P)y[l l  

_< ~llyl l~  -< ~ . (1  + A)(1 - ~.)-111x111 _< 4 ~ ( i  + ~)llxll~. 

A similar computa t ion ,  using the g~ norm, yields [IQU(I  - Q)[[~ < 4aA(1 + A), 

therefore 

(5.5) ]IQU(I  - Q)]]0 _< 4aA(1 + A). 
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Taking the transpose of (5.4) we get that 

P -  Q #  = - [ P V # ( I -  P)  + ( I -  Q ) # U # Q # ] .  

It follows that 

1 1 
(5.6) P -  ~(Q + Q#) = - 2  [ ( I -  P ) V P  + P V # ( I -  P)  

+ Q U ( I  - Q) + ( I  - Q # ) U # Q # ] .  

Let us find more manageable expressions for Q U ( I  - Q) and ( I  - Q # ) U # Q  # .  

First note that 

(5.7) 
(Q - P ) U ( P  - Q) = (Q - P ) U ( I  - Q) - (Q - P ) U ( I  - P)  

= Q U ( I  - Q) - P U ( I  - Q) - Q U ( I  - P)  + p u ( I  - P)  

= Q U ( I  - Q) - Q U ( I  - P)  + P U ( I  - P)  

(because U maps (I - Q)(e~) onto (I - P)(g~), yielding P U ( I  - Q) = 0). Also, 

(5.8) 
Q U ( I -  P) = Q2U( I -  P) 

= ( Q -  P ) Q U ( I -  P) + P Q U ( I -  P) 

= ( Q  - p ) Q u ( I  - Q) + (Q - P)QU(Q - P) + PQU(I - P). 

Combining (5.7) and (5.8) we get that 

(5.9) Q U ( I  - Q) = ( Q -  P ) U ( P -  Q) + Q U ( I  - P)  - P U ( I  - P)  

= ( Q -  P ) U ( P -  Q) + ( Q -  P ) Q U ( I -  Q) 

+ (Q - P ) Q U ( Q  - P)  + P Q U ( I  - P)  - P U ( I  - P) .  

By taking the transpose of both sides we arrive at 

(5.10) ( I  - Q # ) U # Q  # = ( P  - Q # ) U # ( Q  # - P )  

+ ( I -  Q # ) U # Q # ( Q  # - P)  

+ (Q#  - p ) U # Q # ( Q #  - P)  

+ ( I  - P ) U # Q # P  - ( I  - P ) U # P .  
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Hence, by (5.6), (5.9) and (5.10) we have 

(5.11) 
1 # 

P - ~ ( Q + Q  ) = - ~ [ ( I - P ) ( V - U  # + U # Q # ) P  

+ P ( V  # - U + QU)( I  - P)] - 2 [(Q - P ) U ( P  - Q) 

+ (P  - Q # ) U # ( Q  # - P) + (Q - P ) Q U ( I  - Q) 

+ ( I -  Q # ) U # Q # ( Q  # - P)  + ( Q -  P ) Q U ( Q -  P)  

+ (Q# - p ) U # Q # ( Q #  - P)].  

Put  A = ( I - P ) T 1 P + P T 2 ( I - P )  where T1 = - � 8 9  #) and T2 - T1 #. 

Then, clearly, A satisfies the requirements of (5.1). Put  B1 = - �89 ( Q - P ) U ( P - Q )  

and B2 = BI#; then, since [[Q - P[lo -< a, both IIBII[1 and lIB2111 do not exceed 
�89 < �89  AO~)-lOg 2 < a 2. Let B 3 1 _ _ = - - ~ ( Q - P ) Q U ( I - Q )  and B4 B3 #. 

Since [[Q - P[[o = IIQ # - Pl[o _< a and, by (5.5), [[QU(I - Q)Ho -< 4hA(1 + A), 

we get that [[B3[I1 and [IB4111 do not exceed 2a2A(1 + A). Finally, put B5 = 

I (Q _ P)QU(Q - P)  and B6 = B5 #. Then, because [[Q - Pl[o < a we see 2 
that [IBh[[i and [[B6[[1 do not exceed a2A(1 - Aa) -1 ~ 2Aa 2. It follows that 

6 Ei=l [[Bi[]I ~ a2(2 q- hA(1 + A) + 4A) < a2(2 + 12A2). This establishes (5.1) and 

completes the proof of Theorem 5.2. 1 

6. R e m a r k s  an d  o p e n  p r o b l e m s  

The isomorphic type of the range of a projection on e~ is far from being under- 

stood. In view of the above results it may be useful to examine the ranges of 

some special projections. In the sequel, ~(A) denotes a function which depends 

on A but is independent of n. 

PROBLEM 6.1 : Does there exist a function ~o(A) such that, for every finite abelian 

group G and every translation invariant projection P on LI(G) with ][P]] = A, 
d(P(LI(G)) ,  t~ankP) <: ~(A) ? 

PROBLEM 6.2: Does there exist a function ~(A) such that, for every n and every 

A-doubly stochastic and a.l.m, projection P on ~ , d( P(  P~ ), g~ ankP) <_ ~(A)? 

PROBLEM 6.3: Does there exist a function ~o(A) such that for every n and every 

(A-doubly stochastic orthogonal) projection P with [[P[[ = s on P~ there is a 

finite abelian group G and a translation invariant projection Q on L1 (G) such 

that ][Q[I <- ~(A) and d(PP~, Q(LI(G)))  <_ T(A)? 
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PROBLEM 6.4: Does there exist a function ~(A) such that, for every n and every 

projection P with HPII -- A on ~'~, there is an N and an orthogonal projection Q 

on s such that ]lQHo ~- ~p(A) and d(Pf'~, QfN) < ~(A) ? 

Note that ,  by Proposition 1 of [J-J], for every projection P on LI(#)  with 

]IP][ = A and every e > 0 there is an Ll(U) space and a surjective isometry ~ : 

nl (# )  --+ n l (u)  such that,  i f Q  -- ~ p ~ - l ,  then JIQII1 -- A and HQII~ -< A(1 + e ) .  

Remark 6.5: The argument used in the proof of Theorem 4.2 sheds more light 

on a.l.m, projections on l t and may serve as an alternative proof of Proposition 

1.2 in the case X = t?~. Indeed, the argument yields the following: 

THEOREM 6.6: Let P be a projection on f'~ with []PH --- A. Then exactly one of 

the following statements holds: 

(a) There is an operator S E n(~'~) satisfying t r S P  = A, IISIIA ---- 1 and S P  = 

P S  (and hence P is a.l.m.). 

(b) There exist positive numbers ~/o and 60, depending on P, such that, for 

every 0 < c~ < Q, the ball B(P,  c~ + c~ ~) contains a projection Q with 

IIQll A - + 2, where c is a universal constant. 

Indeed, w e  only have to replace f] -- C o m P  4- K by f~ -- C o m P  in the proof 

of Theorem 4.2 and ignore the Hermite property of all operators involved in the 

proof. If S E f~ (1 A then S satisfies the assumptions of Proposition 1.2 and hence 

P is a.l.m. On the other hand, if f~ f3 A = 0 then there is a separating operator 

W, with t r (WT)  -- 0 for all T E f~ and R e ( t r W T )  > "Y0 > 0 for all T E A. 

The fact that  R e ( t r ( W T ) )  = 0 for all T E ~t means precisely, in this case, that  

W = P W ( I  - P) + (I  - P ) W P .  The rest of the argument works perfectly well 

to show that  if P is not a.l.m, then (b) holds. Note that  the norm reduction we 

get in (b), for a projection P which is not a.l.m., is essentially l inea r  in a,  while 

in Proposition 1.2, we obtain a norm reduction of order c~ 2. This may seem to 

be a contradiction but it is not, because, in Proposition 1.2, the constant D is 

universal while in Theorem 6.6 the constants depend on P.  

Remark  6.7: As mentioned in Remark 2.2 of [Z-1], we need a large constant 

D = D(A0) in the definition of an a.l.m, projection in Theorem 5.2 above and 

in Theorem 2.4 of [Z-l]. Theorem 6.6 above shows that,  in the special case of 

X = ~ ,  we are allowed to choose any positive D, independent on n and A0, 

in Definition 1.1 above and omit the restriction A < A0. The choice D = 1 is 

natural,  and, by Theorem 6.6, Proposition 1.2 remains valid with this or any 

other choice of D > 0. 
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PROBLEM 6.8: Let P be an orthogonal projection on ~'~. Suppose that P is 

o.a.l.m. Is it a.l.m.? 

Theorem 6.6 is a first step towards a positive solution of Problem 6.8. 
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